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A new adaptive switching filter with directional impulse 

detection
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A novel adaptive switching filter (ASF) based on directional detection is proposed for denoising the images that are 

highly corrupted by impulse noise. The proposed algorithm employs an efficient noise detection mechanism. It first 

employs an efficient method to estimate the differences between the current pixel and its neighbors aligned with 28 

directions. The current noise pixel is replaced by a median or a mean value within an adaptive filter window with re-

spect to different noise densities. Experimental results show that the proposed approach can not only achieve very low 

miss-detection ratio and false-alarm ratio even up to high noise corruption, but also preserve the detailed information 

of an image very well.  
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There are many median filters, such as switching median 

filter (SMF)[1], adaptive median filter (AMF)[2,3] and 

noise adaptive soft switching median filter (NASMF)[4], 

for denoising images. Recently, an efficient deci-

sion-based algorithm (DBA)[5] has been proposed. How-

ever, they all perform well at low noise densities. Direc-

tional weighted median filter (DWMF)[6] and its im-

proved algorithm (MDWM)[7] can work well for many 

natural images, but fail to incorporate many needed di-

rections during impulse detection process for images 

with many details. The performance of switching median 

filter with boundary discriminative noise detection 

(BDND)[8] is good in detecting impulse noises with 

various densities. Based on Ref.[8], a highly effective 

impulse noise detection (HEIND) algorithm[9] was pro-

posed. It provides an efficient method using both bound-

ary based information and directional based information. 

This algorithm has a better ability in identifying impulse 

noise than the method in Ref.[8]. 

In this paper, a new adaptive switching filter (ASF) 

based on directional detection is proposed. It employs the 

differences between a center pixel and its neighboring 

pixels aligned in 28 directions. The simulation results 

show that the proposed algorithm can achieve excellent 

performance in a wide range of noise densities.  

We focus on the salt-and-pepper impulse whose pixels 

are randomly corrupted by two fixed extreme values, 0 

and 255 (for 8-bit monochrome image), generated with 

the same probability[10]. Assume the size of a noise- cor-

rupted image is M×N. First, a noise-corrupted image is 

analyzed by an extrema detection mechanism. If the 

value at location (i, j) is an extreme value (0 or 255), the 

current pixel is classified to a suspicious noise. An esti-

mated noise density is obtained as R1: 

1

number of suspicious noise pixels

R
M N

=
×

,         (1) 

where R1 is used to decide the noise-filtering method. 

Second, the 28 directional detection mechanism is op-

erated to decide whether the suspicious noise pixel is a 

real noise pixel or not. Traditional direction-based noise 

detections only consider the differences between center 

pixel and its neighboring pixels within some single di-

rections, ignoring the situation that the current pixel may 

be an inflection point of one edge. In order to improve 

the detection accuracy, 28 directions are employed to 

detect the edge direction of an object. Fig.1 shows the 28 

directions for edge detection at location (i, j). The pixel 

at location (i, j) is a suspicious noise decided by the ex-

trema detection mechanism. 

 

 

Fig.1 28 directions for edge detection 
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As shown in Fig.1, to a 5×5 window centered at (i, j), 

for each direction, we compute the absolute differences 

of gray-level values
,

k

i j
D between the center pixel

,i j
X and 

its neighbors
,i s j t

X + + , for 1≤k≤28, ( , ) [ 2,2]s t ∈ − .
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given as 
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Considering the correlation between pixels, the gray- 

level values should be close when they are the edge of an 

object or in the same smoothly varying area. The mini-

mum absolute difference of the 28 direction
,

km

i j
D is se-

lected to be the most closely allied direction for the 

edge.
,

km

i j
D can be expressed by 

, ,
min( ),  1 28
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i j i j
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In order to find the minimum absolute difference 
,

km

i j
D , 

there is no need to calculate each absolute difference of 

the 28 directions with Eq.(4). Making use of combination 

theory can decrease the computations and increase effi-

ciency. As shown in Fig.2, the absolute difference 

,
(1 8)

l

i j
d l≤ ≤  of eight simple directions is firstly com-

puted. Then these eight values are arranged in ascending 

order 
D

V . We select two minimum values 1

,

lm

i j
d  and 2

,

lm

i j
d  

(lm1,lm2∈l) of 
D

V  and add them together. It is neces-

sary to state that these two minimum values do not con-

tain zero value for the purpose of eliminating the effect 

of one direction with the same noise pixels. This compu-

tation strategy can be expressed as follows: 
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Fig.2 8 directions for combination 

 

,

km

i j
D  is used to detect whether the center suspicious 

noise pixel of a local window is noisy or noise-free, and 

the impulse detector can be defined as 

,

,
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noise-free pixel,     others
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where T is a predefined threshold value. 

According to Eq.(6), whether the center pixel of a lo-

cal window is a real noise or not is decided. After that, 

the noise density R2 is recalculated to decide the maxi-

mum size filtering window. R2 is defined as 

2

number of real noise pixels

R
M N

=
×

.              (6) 

Finally, a new type adaptive noise-filtering mechanism 

is employed in the proposed algorithm. If the center pixel 

is classified to be noise-free, it should be kept unchanged. 

Conversely, if the center pixel is classified to be noisy, 

two ways will be used to remove it. Before the process of 

noise filtering, Rn, RN1 and RN2 are predetermined as 

threshold values to compare with R1 and R2. Our filtering 

rule is as follows. 

(1) If R1≤Rn, the size of filtering window is set to 3×3, 

as shown in Fig.3. Because the center pixel of a local 

window is always related closely to pixels close to it, the 

noise pixel is replaced preferentially by the median value 

of noise-free pixel values with closer distance (defined as 

1). If the pixels closer to current noise pixel are all clas-

sified to be noisy, the noise pixel is replaced by the me-

dian value of noise-free pixel values with longer distance 

(defined as 2).  

 

 

Fig.3 The distance of pixels within 3×3 filtering win-

dow 

 

(2) If R1>Rn, the noise-filtering mechanism will 

choose mean values to replace noise pixels. Because 

most of the information of a corrupted image with higher 

noise density is covered by noise, the center pixel weak-

ens its link to its neighboring pixels. Experimental results 

show that the mean value of noise-free pixels can reach 

better effects than the median value. The maximum size 

of filtering window 
max

W  is set as follows: 
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For images with different noise densities, the filtering 

window starts with 3×3, and iteratively extends outward 

by one pixel in all the four sides. If there are noise-free 

pixels in current window, the center noise pixel is re-

placed by the median value of them. Otherwise, the fil-

tering window will be extended by one pixel outward 

until Wmax. 

To ensure high accuracy of filtering, the proposed fil-

ter is performed iteratively for K times.  

To demonstrate the effectiveness of the proposed al-

gorithm, restoration results are compared with those of 

four representative state-of-art algorithms: MF (5×5 fil-

tering window), AMF (3×3 to 5×5 filtering window), 

BDA and BDND. Two gray scale images of Man and 
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Woman with their resolution of 512×512 are selected to 

test the performance, as shown in Fig.4. In the simulation, 

the test images are corrupted with salt-and-pepper im-

pulse noise. The noise density ranges from 10% to 90% 

with increment of 20%. The performance evaluation of 

the filtering operation is quantified by miss-detection 

ratio (MDR), false-alarm ratio (FAR), peak signal-to- 

noise ratio (PSNR) and running time (RT). MDR, FAR 

and PSNR are defined as follows respectively: 

number of miss detection noise

number of total noise
MDR = ,        (8) 

number of false alarm noise

number of total noise

FAR = ,            (9) 

2255
10log10 dBPSNR

MSE

⎛ ⎞= ⎜ ⎟
⎝ ⎠

,                (10) 

2

, ,

1
( )

M N

i j i j
MSE Y X

M N
= −

× ∑∑ ,             (11) 

where M×N is the total number of pixels in the image. Yi,j 

and Xi,j denote the pixels of the restored image and origi-

nal image, respectively. 

 

   

(a)                          (b) 

Fig.4 Testing images we used: (a) Man; (b) Woman 

 

Our experimental results show that when T=5, Rn=0.4, 

RN1=0.4, RN2=0.7, and K=5, the proposed algorithm can 

achieve a better result. Computer simulations in Matlab 

2010b are carried out to assess the performance.  

The MDR and FAR values of Man and Woman from 

different filtering techniques are shown in Tab.1. It can 

be seen that the proposed method has an extraordinary 

ability in identifying impulse noise, and it can achieve 

low miss-detection ratio and false-alarm ratio. Compari-

sons of the values of PSNR with various algorithms are 

presented in Tab.2. The simulation results show that at all 

noise densities, PSNR values of MF, AMF, BDA and 

BDND are lower than that of ASF. Though ASF uses an 

iterative filtering method, it first operates an extrema 

detection to the updated image, which makes the com-

putation reduced greatly for each time. As shown in 

Tab.3, the RT of ASF is much less compared with BDND, 

although it is more than others, so it can reach better fil-

tering results.  

In order to compare the performance subjectively, re-

sults of the filters are shown in Figs.5-7. It is obvious 

that the proposed filter performs better. 

 

Tab.1 MDR and FAR of DBA, BDND and ASF filtering 

techniques 

(a) Man 

DBA BDND ASF Noise 

density MDR FAR MDR FAR MDR FAR

10% 0 1.21 0 0 0 0 

30% 0 0.15 0 1.28×10-5 0 0 

50% 0 3.12×10-2 0 0 0 0 

70% 0 6.57×10-3 0 2.72×10-5 0 0 

90% 0 1.01×10-3 0 1.25×10-3 0 0 

(b) Woman 

DBA BDND ASF Noise 

density MDR FAR MDR FAR MDR FAR 

10% 0 1.38 0 3.56×10-2 4.94×10-4 1.45×10-2

30% 0 0.18 0 9.52×10-3 3.69×10-4 4.58×10-3

50% 0 3.91×10-2 0 4.9×10-3 2.68×10-4 2.93×10-3

70% 0 2.48×10-3 0 3.31×10-3 1.42×10-4 1.93×10-3

90% 0 1.06×10-3 0 2.59×10-3 4.67×10-5 1.37×10-3

 

Tab.2 PSNR(dB) of different filtering techniques 

(a) Man   

Noise MF AMF DBA BDND ASF 

10% 28.39 35.26 35.19 40.25 40.96 

30% 27.34 31.68 31.57 34.39 34.69 

50% 23.34 28.24 28.17 30.59 31.38 

70% 14.11 22.60 25.02 27.34 28.47 

90% 7.49 10.29 20.27 24.03 24.53 

(b) Woman 

Noise MF AMF DBA BDND ASF 

10% 37.73 44.44 44.32 48.47 49.22 

30% 35.65 40.01 39.90 42.44 43.00 

50% 25.42 34.83 35.82 38.22 40.35 

70% 14.09 22.92 31.68 34.62 36.61 

90% 7.15 9.99 24.42 30.14 31.78 

 

Tab.3 RT(s) of different filtering techniques for Man 

Noise MF AMF DBA BDND ASF 

10% 0.09 0.40 5.54 12.48 4.57 

30% 0.09 0.40 5.44 16.26 12.51 

50% 0.09 0.41 5.47 20.33 5.56 

70% 0.09 0.43 5.45 25.05 7.71 

90% 0.09 0.40 5.57 29.79 11.12 

 

   

(a)                 (b)                 (c) 
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(d)                 (e)                 (f) 

Fig.5 Image restoration results of the Man image with 

different techniques: (a) 70% noise corrupted; (b) MF; 

(c) AMF; (d) DBA; (e) BDND; (f) ASF 

 

 

(a)                 (b)                 (c) 

 

(d)                 (e)                 (f) 

Fig.6 Image restoration results of the Man image with 

different techniques: (a) 90% noise corrupted; (b) MF; 

(c) AMF; (d) DBA; (e) BDND; (f) ASF 

 

 
(a)                 (b)                 (c) 

 
(d)                 (e)                 (f) 

Fig.7 Image restoration results of the Woman image 

with different techniques: (a) 90% noise corrupted; (b) 

MF; (c) AMF; (d) DBA ; (e) BDND; (f) ASF 

 

Objective and subjective experimental results show 

that ASF performs better than other existing denoising 

techniques. 
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